A Geometric take on Metric Learning
نویسندگان
چکیده
Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the structure of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as dimensionality reduction and regression in a principled way. We prove that, with appropriate changes, multi-metric learning corresponds to learning the structure of a Riemannian manifold. We then show that this structure gives us a principled way to perform dimensionality reduction and regression according to the learned metrics. Algorithmically, we provide the first practical algorithm for computing geodesics according to the learned metrics, as well as algorithms for computing exponential and logarithmic maps on the Riemannian manifold. Together, these tools let many Euclidean algorithms take advantage of multi-metric learning. We illustrate the approach on regression and dimensionality reduction tasks that involve predicting measurements of the human body from shape data. 1 Learning and Computing Distances Statistics relies on measuring distances. When the Euclidean metric is insufficient, as is the case in many real problems, standard methods break down. This is a key motivation behind metric learning, which strives to learn good distance measures from data. In the most simple scenarios a single metric tensor is learned, but in recent years, several methods have proposed learning multiple metric tensors, such that different distance measures are applied in different parts of the feature space. This has proven to be a very powerful approach for classification tasks [1, 2], but the approach has not generalized to other tasks. Here we consider the generalization of Principal Component Analysis (PCA) and linear regression; see Fig. 1 for an illustration of our approach. The main problem with generalizing multi-metric learning is that it is based on assumptions that make the feature space both non-smooth and non-metric. Specifically, it is often assumed that straight lines form geodesic curves and that the metric tensor stays constant along these lines. These assumptions are made because it is believed that computing the actual geodesics is intractable, requiring a discretization of the entire feature space [3]. We solve these problems by smoothing the transitions between different metric tensors, which ensures a metric space where geodesics can be computed. In this paper, we consider the scenario where the metric tensor at a given point in feature space is defined as the weighted average of a set of learned metric tensors. In this model, we prove that the feature space becomes a chart for a Riemannian manifold. This ensures a metric feature space, i.e. dist(x,y) = 0 ⇔ x = y , dist(x,y) = dist(y,x) (symmetry), dist(x, z) ≤ dist(x,y) + dist(y, z) (triangle inequality). (1) To compute statistics according to the learned metric, we need to be able to compute distances, which implies that we need to compute geodesics. Based on the observation that geodesics are
منابع مشابه
Joint Dimensionality Reduction and Metric Learning: A Geometric Take
To be tractable and robust to data noise, existing metric learning algorithms commonly rely on PCA as a pre-processing step. How can we know, however, that PCA, or any other specific dimensionality reduction technique, is the method of choice for the problem at hand? The answer is simple: We cannot! To address this issue, in this paper, we develop a Riemannian framework to jointly learn a mappi...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملGeometric Modeling of Dubins Airplane Movement and its Metric
The time-optimal trajectory for an airplane from some starting point to some final point is studied by many authors. Here, we consider the extension of robot planer motion of Dubins model in three dimensional spaces. In this model, the system has independent bounded control over both the altitude velocity and the turning rate of airplane movement in a non-obstacle space. Here, in this paper a g...
متن کاملMetric Learning on Manifolds
In recent years, manifold learning has become increasingly popular as a tool for performing nonlinear dimensionality reduction. This has led to the development of numerous algorithms of varying degrees of complexity that aim to recover manifold geometry using either local or global features of the data. Building on the Laplacian Eigenmap framework, we propose a new paradigm that offers a guaran...
متن کامل